<u>Дифракционные in-situ эксперименты для</u> <u>исследования пъезо- и сегнетоэлектриков</u>

при приложении электрического поля

Семен Горфман

Department of Physics, University of Siegen, Germany

2014: International year of crystallography

ducational. Scientific and Union of Cultural Organization Crystatic

National for the International Near of Crystalography 2014

opening ceremony unesco building, paris 20-21 january 2014

19/03/2015 S Gorfman, In-situ diffraction studies of piezo- and ferroelectrics, CSP-2015, St. Petersburg

The content

1. Piezoelectricity

- Physical crystallography
- Piezoelectric effect and symmetry

2. Ferroelectricity / Сегнетоэлектричество

- Formation of domain structure
- Piezoelectricity in ferroelectrics

3. In-situ X-ray diffraction under electric field

- Methodology of in-situ diffraction experiment
- Application of electric field to a crystal
- Stroboscopic data collection
- Diffraction on single crystals, powders, multi-domain systems
- Investigation of piezoelectricity in <u>uniaxial ferroelectrics</u>

<u>Microscopic</u> \rightarrow Macroscpic

Macroscopic 'black box' concept of a crystal

J.F. Nye

Physical properties of crystals and their representations by tensors and matrices Oxford University Press, 1985. Physical Properties of Crystals Their Representation by Tensiers and Matrices J. F. XVE

Physical properties

Perturbation	CVCTERA	Response
	SYSTEIN	
Perturbation	Response	Property
Electric field Mechanical stress	Dielectric polarization Deformation	Dielectricity Elasticity
Temperature change Magnetic field	Deformation Magnetization	Thermal expansion Magnetism

ARE 'CROSS-OVER' PHYSICAL PROPERTIES POSSIBLE?

Yes: electromechanical properties

8/55

Tensor of piezoelectric coefficients

Direct piezoelectric effect

Polarization

Third-rank tensor of direct piezoelectric effect

Converse piezoelectric effect

Properties of piezoelectric effect

a) Direct and converse effects are described by the <u>same</u> tensor [pC / N]. Follows from THERMODYNAMICS

b) Intrinsic symmetry

Nothing to do with a crystal symmetry

10/55

Tensor notations, ij					11	22	33	23	13	12		
Voigt notations, m					1	2	3	4	5	6		
$[d_{km}] = \begin{pmatrix} d_{11} \\ d_{21} \\ d_{31} \end{pmatrix}$	d_{12} d_{22} d_{32}	d_{13} d_{23} d_{33}	$d_{14} \\ d_{24} \\ d_{34}$	$d_{15} \\ d_{25} \\ d_{35}$	d_{16} d_{26} d_{36}		18 independent piezoelectı constants					

 $u_{36}/$

Piezoelectric effect / crystal symmetry

Neumann's principle:

If a crystal is invariant with respect to a certain symmetry operations, any of its physical properties must also be invariant with respect to the same symmetry operations

Relative to
$$\{e'_n\}$$
 $d'_{ijk} = d_{ijk}$ Relative to $\{e_n\}$

The matrix of transformation between the <u>coordinate systems, $[a_{ij}]$:</u> $\boldsymbol{e}'_i = a_{ij}\boldsymbol{e}_j$

Mathematical expression of Neumann's principle

$$d_{ijk} = a_{ii_1} a_{jj_1} a_{kk_1} d_{i_1 j_1 k_1}$$

11/55

Piezoelectric effect / crystal symmetry

Centrosymmetric point group

 α -quartz

19/03/2015 S Gorfman, In-situ diffraction studies of piezo- and ferroelectrics, CSP-2015, St. Petersburg

Piezoelectric ceramics (point group ∞mm)

...is a powder, which can be artificially made piezoelectric by poling. The most notorious example of ferroelectric ceramics is $PbZr_{1-x}Ti_xO_3$ (PZT)

Material remains poled (even after electric field is removed)

19/03/2015 S Gorfman, In-situ diffraction studies of piezo- and ferroelectrics, CSP-2015, St. Petersburg

Application of piezoelectric effect

- Pressure sensors
- Actuators
- Piezo motors
- Car fuel injectors
- Frequency generators

There is a permanent request to design new piezoelectrics for example environmentally friendly alternatives to the currently dominating PZT.

The global market of piezoelectric devices in 2014 is estimated as €9.7 billion with the annual growth rate of 13.2 %.

• Luminous dance floors

15/55

What stands behind a piezoelectricity

Natural

16/55

- Single crystals
- Intrinsic (own) piezoelectric effect
- d <10 pC /N

Artificial

- Powders / ceramics
- d ~ 100 2000 pC /N
- Lower stability
- Toxic (lead based)
- Ferroelectric

Ferroelectrics

...the materials in which two (or more) spontaneous polarization states can be switched by an external electric field

Ferroelectric perovskites

High-temperature

Low temperature

Ideal perovskite structure, cubic symmetry ($Pm\overline{3}m$).

Distorted perovskite structure, lower symmetry (R3c, P4bm,...):

The development of macroscopic polarization is combined with the development of strain

19/03/2015 S Gorfman, In-situ diffraction studies of piezo- and ferroelectrics, CSP-2015, St. Petersburg

Development of a macroscopic strain

19/03/2015 S Gorfman, In-situ diffraction studies of piezo- and ferroelectrics, CSP-2015, St. Petersburg

Formation of ferroelectric / ferroelastic domains (2D case)

Example of domain pattern

Classification of ferroic domains

180° (inversion) domain patterns / uniaxial ferroelectrics

No strain relationship between domains. Domain switching <u>does</u> <u>not affect</u> the shape of the sample

Non-180° (ferroelastic) domain

Domains are deformed relative to each other. Domain switching <u>causes mechanical</u> deformation

Examples of real domain structures in ferroelectrics

Wu et al. J Eur Ceram Soc, 35 (2015) Shur et al. J Appl Phys 112, 064117 (2012) Shwartsman et al. Phys Rev B**77**, 054105, (2008)

- Polarized light /birefringence microscopy
 - Confocal Raman scattering
 - Transmission electron microscopy
 - Piezoresponse force microscopy

Deformation, mediated by a domain wall motion

19/03/2015S Gorfman, In-situ diffraction studies of piezo- and ferroelectrics, CSP-2015, St. Petersburg24/55

What exactly drives piezoelectricity?

- Probing bulk of a material, macroscopic multi-domain volumes
- Domains resolving power
- Average domain sizes
- Macroscopic strain (lattice parameters)
- Atomic positions

IN-SITU X-RAY CRYSTALLOGRAPHY

IN-SITU (AS IT HAPPENS) UNDER ELECTRIC FIELD

25/55

ESRF, Grenoble, France

Modern tools: synchrotrons

DIAMOND LIGHT SOURCE, Didcot, UK

PETRA III, Hamburg, Germany

Probing the bulk / penetration depth

Synchrotron radiation -> bulk

19/03/2015S Gorfman, In-situ diffraction studies of piezo- and ferroelectrics, CSP-2015, St. Petersburg27/55

In situ X-ray diffraction

28/55

Application of electric field

The principle of stroboscopic data collection

Modern realization of stroboscopic experiement

Experimental equipment

- Function generator
- High-voltage amplifier
- Multi-channel analyser
- Voltage monitor
- Current monitor
- Point detector

Single crystal X-ray diffraction: rocking curve

Determination of field induced strain

S. Gorfman, O. Schmidt, U. Pietsch, L. Bohaty and P. Becker. Z. Krist. 222 (2007), 396-401

$$\Delta \omega = -tan\theta \epsilon_{ij} h_i h_j - \epsilon_{ij} h_i y_j + r_{ij} h_i y_j$$
Components of strain tensor
Components of rotation tensor

Field induced peaks shifts \rightarrow Strain \rightarrow Piezoelectric constants

19/03/2015 S Gorfman, In-situ diffraction studies of piezo- and ferroelectrics, CSP-2015, St. Petersburg 3

Accessing atomic displacements

<u>α-GaPO₄ (P3₁21)</u>

1000*Electric field (E = 4 kV/mm) is applied in [110] direction

19/03/2015 S Gorfman, In-situ diffraction studies of piezo- and ferroelectrics, CSP-2015, St. Petersburg

Schmidt, Gorfman, Neumann, Engelen, Bohaty, Pietsch (2009) Acta Cryst A65, 267 - 275

1000 * Electric field (E = 1 kV / mm) is applied along [010] direction

37/55

19/03/2015 S Gorfman, In-situ diffraction studies of piezo- and ferroelectrics, CSP-2015, St. Petersburg

What do we learn from these results?

S. Gorfman, O. Schmidt, V. Tsirelson, M. Ziolkowski, U. Pietsch. ZAAC, 639(11), 1953 – 1962 (2013)

1. Characterizing individual structural units - <u>rotation</u> and deformation parts.

2. Evaluating individual bonds properties under external electric field.

 Δ (Ga-O) = 1.8·10⁻⁵ Å / (kV/mm) Δ (P-O) = 4.1·10⁻⁵ Å / (kV/mm)

 Δ (S-O) = 1.6·10⁻⁵ Å / (kV/mm) Δ (Li-O) = 11.3·10⁻⁵ Å / (kV/mm)

38/55

3. Comparing dynamics of bond distortion and piezoelectric deformation under external electric field. What happens first, what is the reason of what?

Diffraction from a multi-domain ferroelectrics

19/03/2015 S Gorfman, In-situ diffraction studies of piezo- and ferroelectrics, CSP-2015, St. Petersburg

Reciprocal space maps of ferroelectric crystals

S. Gorfman, D.S. Keeble, A.M. Glazer, X. Long, Y. Xie, Z.-G. Ye, S. Collins, P.A. Thomas Phys Rev B84, (020102R), (2011)

84.2

84

42

41.8

41.6

41.4

83

83.2

83.4

83.6

 2θ , deg

83.8

Powder diffraction on ferroelectrics

High-energy X-ray diffraction study of tetragonal

ferroelectric ceramics

42/55

High-energy X-ray diffraction study of ferroelectric ceramics

A. Pramanick, D. Damjanovic, J. E. Daniels, J. C. Nino, and J. L. Jones, J Am Ceramic Soc, 94(2), 293-309 (2011) Jones JL, Aksel E, Tutuncu G, Uscher TM, Chen J, Xing X, Studer AJ. Phys Rev B, 86, 024104 (2012)

<u>Time-resolved X-ray diffraction study of Sr_{0.5}Ba_{0.5}Nb₂O₆</u>

 PRL 114, 097601 (2015)
 PHYSICAL REVIEW LETTERS
 week ending 6 MARCH 2015

 Time-Resolved X-Ray Diffraction Reveals the Hidden Mechanism of High Piezoelectric Activity in a Uniaxial Ferroelectric

 Semën Gorfman,^{1,*} Hyeokmin Choe,¹ Vladimir V. Shvartsman,² Michael Ziolkowski,¹ Marco Vogt,¹ Jörg Strempfer,³ Tadeusz Łukasiewicz,⁴ Ullrich Pietsch,¹ and Jan Dec⁵ ¹Department of Physics, University of Siegen, D-57072 Siegen, Germany ²Institute for Materials Science, University of Duisburg-Essen, D-45141 Essen, Germany ³Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22603 Hamburg, Germany ⁴Institute of Electronic Materials Technology, 133 Wolczynska Street, PL-01-919 Warsaw, Poland ⁵Institute of Materials Science, University of Silesia, 12 Bankowa Street, PL-40-007 Katowice, Poland (Received 8 October 2014; published 3 March 2015)

Uniaxial (tetragonal), P || c

44/55

Across a virtual antiphase boundary

19/03/2015 S Gorfman, In-situ diffraction studies of piezo- and ferroelectrics, CSP-2015, St. Petersburg

X-ray diffraction experiment on SBN50

- X-ray penetration depth: 10 20 μm
- Electric field shape : triangular
- Frequency: **20 Hz**
- Simultaneous monitoring of dielectric (voltage current) and diffraction (rocking curve) response
 1850 V / mm (above coercive field) 300 V / mm (sub-coercive field)

Strong electric field, 0 0 7 peak

Separation of peak into two components

Direct separate analysis of domain dynamics is possible for some time ranges. Calculations of mass centres and peak width

48/55

Peak positions and peak width of 007

Two different routes of polarity switching

Time range 1

 Inversion of the effective piezoelectric constant Time range 2

- Formation of small domains under electric field
- Large increase of the lattice constant

50/55

51/55

Conclusions, Part 1

Piezoelectric effect: mechanical response to electrical perturbation / electrical response to a mechanical perturbation.

Piezoelectric effect is described macroscopically by a third rank tensor. This description does not need any microscopic information.

Piezoelectric effect is particularly strong in ferroelectrics. It may be connected to the existence of ferroelastic/ferroelectric domains

Experimental method for studying mechanisms of piezoelectric effect: time-resolved stroboscopic X-ray diffraction. It involves analysis of structure factor and small angular shifts of the Bragg peak

X-ray diffraction provide the access to intrinsic and extrinsic piezoelectric effect

Uniaxial ferroelectrics: new mechanism of high electromechanical activity has been recently discovered

1.2

Conclusions, Part 2

Acknowledgements

German Federal Ministry for Education and Research

Bundesministerium für Bildung und Forschung

05K13PSA. STROBO-DAQ, Time-resolved X-ray diffraction study of functional materials under external electric field.

Crystallography in Siegen:

- Prof Dr Ullrich Pietsch
- Hyeokmin Choe
- Behnam Khanbabaee

Collaborations:

Pam Thomas, Mike Glazer. University if Warwick / Oxford, UK Vladimir Shvartsman. University of Duisburg-Essen, Germany Jan Dec, University of Silesia, Poland Nan Zhang, Alexei Bokov, Zuo-Guang Ye. Simon-Fraser University Vancouver, Canada Jacob Jones. North Carolina State University, USA

Спасибо за внимание