

49-я Школа ПИЯФ по Физике Конденсированного Состояния 16-21 марта 2015, Санкт-Петербург Зеленогорск

Вклад кристаллографии в разработку материалов для Li-аккумуляторов

Е.В. Антипов

Химический факультет МГУ имени М.В. Ломоносова

Outline

- Introduction
- Main types of cathode materials for LIB: Layered (LiMO₂) and LiFePO₄
- A₂MPO₄F fluoride-phosphates
- Concluding remarks

1995: «Advances in battery research are always restricted by chemistry » *R. E. Powers (N.Y. Times)*

and Crystallography!

Energy storage systems

Stationary energy storage

HEV, EV

Consumer electronics

Perspectives for Li-ion batteries

Yunil HWANG, A. D. Little Korea, Korea, "Nano-enhanced Market Perspectives in Solar & Li-ion Battery" OECD workshop on "Nanotechnology for sustainable energy options", 2010

Development of Electric Vehicles

La Jamais Contente - 1899

- 2 electric motors with 50 kW in total
- 200 individual Pb-PbO₂ cells
- Total mass 1450 kg
- Battery mass > 700 kg
- Max. speed 106 km/h

Nissan leaf - 2010

- Total weight Batteries weight Stored Energy Power Distance Maximum speed
- 1500 kg **300 kg 24 kWh** 120 h.p. **70 – 220 (150) km** 150 km/h
- Cathode material (E_g = 80 Wh/kg)
- LiMn₂O₄

Safety problem

Daily Mail, 20.01.2013

Impact of crystallography

J. Power Soc.. 258 (2014) 356

Chem. Mat. 23 (2011) 3540

Mat. Res. Bull., Vol. 15, pp. 783-789, 1980. Printed in the USA. 0025-5408/80/060783-07\$02.00/0 Copyright (c) 1980 Pergamon Press Ltd.

Li_CoO2 (O<x≤1): A NEW CATHODE MATERIAL FOR BATTERIES OF HIGH ENERGY DENSITY

K. Mizushima, P.C. Jones, P.J. Wiseman and J.B. Goodenough Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR

Examination of the known Li^{*}-ion solid electrolytes led us to conclude that <u>Li^{*} ions may be mobile in close-packed oxygen arrays</u>. Given that hypothesis, it was then natural to consider the transition-metal lithium oxides LiMO₂ crystallizing in the layered structure

Why Li?

- 2) Weak Li-O bonds
- 3) Low size

1)

- → high Li-ion conductivity
 - mechanical stability

Selection of Electrode Material

To increase specific energy — to higher cathode potential and capacity

To increase power ———

to higher Li-ion diffusion rate

Cathode materials: characteristics and requirements

Energy = Voltage x Capacity

Cathode materials: characteristics and requirements

 $V \times C$

increasing capacity

С

(multi-valent systems)

Cathode materials: characteristics and requirements

Selection of composition

Main Structure Types

Layered LiMO₂ oxides

 α -NaFeO₂

Co³⁺ LS ($t_{2g}^{6}e_{g}^{0}$) $\leftarrow \rightarrow$ HS ($t_{2g}^{4}e_{g}^{2}$)

Problems:

Cation disorder

Stability (oxygen evolution, structure transformation)

Cost

Co

25

25

0.1

0.7

Ecology

|--|

Fe Ni Mn Market price of metal [\$/kg] 0.23 0.5 13 Atomic contents in crust [ppm] 50000 950 75 Permissible amount in air [mg/m3] 10 5 1 Permissible amount in water [mg/L] 300 200 13.4

Influence of cation disorder

0

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Suppression of cation disorder: synthesis by cation exchange from NaNi_{0.5}Mn_{0.5}O₂ $\Delta c = 0.06 \text{ Å}$

Li-slab 2.59 Å (SS) and 2.65 Å (IE)

LiFePO₄ - olivine

*c*_t = 170 mAh/g; E ~ 3.5 V

Advantages:

- stable material (3D structure + PO_4) LiFePO₄ $\leftarrow \rightarrow$ FePO₄ + Li⁺ + e-
- ecologically friendly

- cheap

Disadvantages:

- low electronic conductivity~ 10-9 S/см
- low D~10⁻¹⁵ cm²/s (t ≈ r²/D)/ 2-phase mechanism
- low density
- medium potential (for phases with Mn = 4.2 V, Co = 4.9 V)

Li-ion diffusion pathway

MD (M.S. Islam et al. Chem. Mater. 17 (2005) 5085

NPD/MEM: S.I. Nishimura et al. Nature Materials 7 (2008) 707

BVS mapping with 3DBVSMAPPER program

$$BVS = \sum_{j=1}^{N} \left[\exp\left(\frac{R_o - d_j}{b}\right) \right] \xrightarrow{d_j - \text{ bond distance,}}_{Ro, b - \text{ tabular constant}}$$

M. Sale, M. Avdeev, J. Appl. Cryst. 45(2012),1054

Bond valence summation (BVS)

2nd Pauling rule:

bond valence sum of cations converging on an anion should be equal to the valence of the anion

D. Altermatt, I. D. Brown (1985)

$$BVS = \sum_{j=1}^{N} \left[\exp\left(\frac{R_o - d_j}{b}\right) \right]$$

dj - bond length, Ro, b - tabular constants

Bond valence sum = formal oxidation state of the anion

Altermatt, Brown, Brese, O'Keefe – analysis of 30000 compounds

A quick and simple tool for validating of crystal structure

Sale, M. & Avdeev, M. (2012). J. Appl. Cryst. 45, 1054–1056 Brown, I. D. (2009). Chem. Rev. 109, 6858–6919

Search for new cathode materials

Search for new cathode materials

* A.K. Padhi et al., *J. Electrochem. Soc.* 144 (1997) 1188 ** G. Rousse and J.M. Tarascon, *Chem. Mat.* 26 (2014) 394

Fluoride-sulphates: LiFeSO₄F

Fluoride-phosphates A₂MPO₄F

- 1. B.L.Ellis et al., Nature Mat. 6 (2007) 749
- 2. O.V.Yakubovitch et al., Acta Crystallogr.C 53 (1997) 395
- 3. M. Dutreilh *et al.*, *JSSC* 142 (1999) 1
- 4. S. Okada et al., J. Power Sources 146 (2005) 565

Crystal structure of Li₂CoPO₄F by Precession Electron Diffraction

Vainshtein, B.K. (1964) Structure analysis by electron diffraction. New York: Pergamon Press

326 intensities (≈ IFI²) for structure determination were taken from 13 different zones Co and P were found by direct methods (SIR2008), O(F) and Li from Fourier maps Structure was refined by JANA 2006 (PO4 was used as rigid body)

3D-Li₂CoPO₄F: crystal structure

• 3 independent Li-positions,

Li-ion mobility: Li1 > Li2 > Li3

D(Li3)~0 (plateau is reached) D(Li2) = 9.5*10⁻⁸ cm²/s D(Li1) = 3.3*10⁻⁷ cm²/s

Li₂CoPO₄F: electrochemical measurements

CV in the potential range 3.0-5.1 V at the scan rate 50 μ Vs-1. The insert- charge-discharge performance at C/2 cycling rate.

- . discharged capacity of 80 mAh/g ~ 0.55 mole Li
- slope : ~ 0.7 V per 1Li mole (x=1 at about 5.5 V)
- "solid solution" behavior
- structure transformation at >4.8 V

Capacity vs. voltage: from potentiostatic step measurements (4.2 V and variable anodic potentia

Li₂CoPO₄F: structure transformation upon Li-extraction

- volume expansion of $\Delta v \sim 370$ \rightarrow
- enlarging of diffusion channels
- involving of Li2 in diffusion : extraction of 1.5 Li⁺ per f.u. ??? at 5.9 V (?)
- unit cell expansion favors Li⁺-ion diffusion in the modified framework
- "fine structure tuning "

to decrease the working potential !

N.R. Khasanova et al., J. of Power Sources 196 (2011) 355

$Li_2(Co_{1-x}M_x)PO_4F$ with M=Fe, Mn

М	Mn ²⁺	Fe ²⁺	Co ²⁺	Ni ²⁺
r, Å	0.83	0.78	0.74	0.69
E* (M ²⁺ /M ³⁺), V	4.1	3.45	> 4.8	>5.2
* for olivine-type mat	erials			

• narrow range of solid solutions:

 $\begin{array}{ccc} \text{Li}_2(\text{Co}_{1-x}\text{Fe}_x)\text{PO}_4\text{F} & x \leq 0.3\\ \text{Li}_2(\text{Co}_{1-x}\text{Mn}_x)\text{PO}_4\text{F} & x \leq 0.1\\ & & \text{Li}^+ & \longrightarrow & \text{Na}^+\\ \text{``framework elasticity'':} & & & & & \\ \hline \textbf{0.76 \ \text{\AA}} & & & & 1.02 \ \text{\AA} \end{array}$

NaLiFePO₄F: preparation and characterization

<u>Synthesis:</u> LiFePO₄(C) + NaF $\xrightarrow{\sim 650-670^{\circ}C}$ NaLiFePO₄F(C)

ICP analysis: Na_{1.01}/Li_{1.05}/Fe_{0.97}/P_{1.00}

X-ray diffraction

	a, Å	b, Å	<i>c</i> , Å	<i>V</i> , Å ³
NaLiFePO₄F	10.977 (2)	6.3627(11)	11.429 (2)	798.6(3)
Li ₂ CoPO ₄ F	10.4578(13)	6.3887(5)	10.877(2)	726.1(2)

H.Mizuta, ECS Fall Meeting, 2011, Abstract No. 404. N.R. Khasanova et al., J. Chem. Mat. 24 (2012), 4271. H. B. Yahia et al. Dalton Trans. 41 (2012), 11692.

NaLiFePO₄F: structure and properties

Mössbauer spectroscopy

- complete ordering of Na⁺ and Li⁺ ions
- Fe²⁺ on the two octahedral sites

- Electrochemical performance Li-cell, 1M LiPF₆ in EC/DMC
- reversible deintercalation with discharge capacity of ~110 mAhg⁻¹

NaLiFePO₄F: *ex-situ* investigation

XRD pattern

- shift of peaks
- redistribution of intensities for 002 and 200 peaks
- EDX data
- continuous shift of peaks →
 - solid solution behavior V = 744.5(6) Å³
- volume change between charged and discharged states of 1.7%

3D- Li₂FePO₄F

a = 10.775(5)Å

b = 6.266(4) Å *c* = 11.027(6) Å

Li₂FePO₄F: electrochemical performance

Li-cell, 1M LiPF₆ in EC/DMC

• PITT: 2.7-3.7-2.7 V (vs. Li/Li+), 0.05 V step

- discharge capacity ~114 mAh/g (0.84 Li)
- working potential $\sim 3.4 \text{ V}$
- stable cycling
- "solid solution" de/intercalation mechanism (no interfacial problems)

LiCoO₂: D ~ 10⁻⁹ cm²/s LiFePO₄: D ~ 10⁻¹⁵ cm²/s

N.R. Khasanova et al., Chem. Mat. 24 (2012) 4271

Concluding remarks: Li₂MPO₄F vs. LiFePO₄

	solid solution
D _{chem}	≈ 10 ⁻¹⁰ cm ² /s

2-phase mechanism ≈ 10⁻¹⁵ cm²/s

Volume change (%)	Co ~ 4.5 %	Fe 1.7%	6.7%
E _g for 1Li (Wh/kg)	730	496	583
E _g for 1.5 Li (Wh/kg)	1095	744	-

Perspectives of Fluoride-phosphates as cathodes for LIB

Chemical composition	Dimensionality of polyhedra network / Li-ion diffusion pathway	Average potential vs. Li ⁺ /Li ⁰ (V)	Theoretical specific capacity (mAh/g)/ energy (Wh/kg)*
LiFePO ₄	3D / 1D	3.43	170 / 583
LiVPO ₄ F	3D/ 1D	4.2	156 / 655
Li ₂ VPO ₄ F	3D/ 1D	1.8	150 / 270
Li2FePO4F (tavorite type)	3D/ 1D	2.9	146 / 423
Li2FePO4F (layered type)	2D / 2D	3.3	146 / 482
Li ₂ FePO ₄ F (3D type)	3D / 1-2D	3.4	146 / 496
Li2MnPO4F	3D / 2D	3.9	147 / 573
Li ₂ CoPO ₄ F	3D / 1-2D	5.1	143 / 730

J. Barker et al., Electrochem. Solid-State Lett. 6 (2003); B.L. Ellis et al., Nature Mat. 6 (2007);

N. Recham et al., Chem. Mater. 22 (2010) 1142.

Acknowledgements

Department of Chemistry, Moscow State University

Oleg Drozhzhin Stanislav Fedotov **Nellie Khasanova** Darja Storozhilova Dmitry Filimonov

ICMCB, Bordeaux Claude Delmas

FLNP, JINR, Dubna

EMAT, RUCA, Antwerp Artem Abakumov Joke Hadermann

A.M. Balagurov I.A. Bobrikov

Funding from RFBR and SkolTech

